Abstract
AbstractSupersonic jets (Mach number M = 1.4 – 2.0) of dense plasma were produced by a plasmatron in a pulsed regime. The shock structure was investigated by fast mirror cameras, by the schlieren technique and by probe and spectroscopic methods. It was found that during jet expansion the bow shock ahead the gas‐plasma interface and the shock behind it are superimposed with the quasistationary shock structure which includes the Mach disk. Whereas the plasma in the discharge chamber is in LTE (nE ≈ 5 × 1023 m−3, T ≈ 14000 K), the electron density of the expanding jet plasma falls to a plateau value of nE ≈ 5 × 1019 m−3 below the LTE limit. At this phase, the jet plasma formed a ball‐like turbulent plasmoid which moves at a subsonic velocity through the air up to some milliseconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.