Abstract

This paper provides a mathematical analysis of a virus-marine bacteria interaction model. The model is a simplified case of the model published and used by Middelboe (Middelboe, M. 2000 Microb. Ecol. 40, 114-124). It takes account of the virus, the susceptible bacteria, the infected bacteria and the substrate in a chemostat. We show that the numerical values of the parameters given by Middelboe allow two different time scales to be considered. We then use the geometrical singular perturbation theory to study the model. We show that there are two invariant submanifolds of dimension two in the four-dimensional phase space and that these manifolds cross themselves on the boundary of the domain of biological relevance. We then perform a rescaling to understand the dynamics in the vicinity of the intersection of the manifolds. Our results are discussed in the marine ecological context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.