Abstract

We consider convex problems of semi-infinite programming (SIP) using an approach based on the implicit optimality criterion. This criterion allows one to replace optimality conditions for a feasible solution x 0 of the convex SIP problem by such conditions for x 0 in some nonlinear programming (NLP) problem denoted by NLP(I(x 0)). This nonlinear problem, constructed on the base of special characteristics of the original SIP problem, so-called immobile indices and their immobility orders, has a special structure and a diversity of important properties. We study these properties and use them to obtain efficient explicit optimality conditions for the problem NLP(I(x 0)). Application of these conditions, together with the implicit optimality criterion, gives new efficient optimality conditions for convex SIP problems. Special attention is paid to SIP problems whose constraints do not satisfy the Slater condition and to problems with analytic constraint functions for which we obtain optimality conditions in the form of a criterion. Comparison with some known optimality conditions for convex SIP is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.