Abstract

Industries transporting CO2 gas-saturated fluids have infrastructures made of carbon steel. This is a good material with great mechanical properties but prone to corrosion and potential failure. Corrosion in sweet environments involves the formation of FeCO3 as a corrosion film, which is recognized to play a protective role under certain conditions. This work on the dissolution of corrosion films in sweet environments, under acidic and undersaturated conditions, demonstrates that the effects on the integrity of steel are far more significant than the damage observed on the surface of the corrosion film. Our results prove that dissolution of FeCO3 involved the presence of an amorphous phase, the intermediate formation of FeCl2 or FeCl+, and the presence of a phase with short distance atom-atom correlations. The amorphous phase was identified as a mixture of retained γ-Fe and Fe3C. Partially broken α-Fe and Fe3C structures were identified to prove the damage on the material, confirming the interface zone without evident damage on the corrosion film. Dissolution affected both the α-Fe and FeCO3, with the lattice [102̅] from the FeCO3 crystalline structure being the fastest to dissolve. The damage of steel at the molecular scale was evident at the macroscale with pit depths of up to 250 μm. The impact on the integrity of steel can be, therefore, more drastic than frequently reported in industrial operations of CO2 transport industries that use cleaning procedures (e.g., acid treatment, pigging) as part of their operational activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.