Abstract

The use of superparamagnetic iron oxide nanoparticles (SPIONs) and radiolabelled nanoparticles (NPs) has grown considerably over the recent years, and the SPIONs labelled with medicinal radionuclides offer new opportunities in multimodal diagnostics and in the drug-delivery systems for targeted alpha-particle therapy (TAT) driven by magnetic field gradient or by biologically active moieties bound on NPs shell. However, the mechanisms of NPs radiolabelling are not studied substantially and still remain unclear, even though the way of label attachment directly implies the stability of the label-nanoparticle construct. Since the 223Ra was the first clinically approved alpha-emitter, it is a promising nuclide for further development of its targeted carriers. We report here on the study of 223Ra uptake by the Fe3O4 SPIONs, together with an attempt to propose the 223Ra uptake mechanism by the Fe3O4 NPs in the presence of a phosphate buffer a typical formulation medium, under the pseudo-equilibrium conditions. Further, the in vitro stability tests of the prepared [223Ra]Fe3O4 NPs were performed to estimate the 223Ra label stability. The potential use of 223Ra-labelled SPIONs in theranostic applications is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.