Abstract

In this paper, a new kind of bionic spoiler rib based on the shape of a shark shield scale is proposed, and the structural parameters of the bionic rib with optimal jf factor are determined. The thermal properties of bionic fins with different lengths, widths, and heights and plate-fin heatsinks with different positions were studied utilizing computational fluid dynamics. Then the optimal structural parameters of the bionic fins were obtained by the Taguchi method and multi-objective optimization. The study finds that the jf factor of the bionic rib decreases by up to 15 % with increasing rib height at Reynolds number 6000. Conversely, it increases by up to 10.38 % with increasing rib length, decreasing by up to 2.07 % with increasing rib width at the same Reynolds number. In terms of location, the bionic rib can exert its effect of enhancing the jf factor when it is close to the channel outlet. Finally, using the Taguchi method and multi-objective optimization method, the optimal structural parameters of the bionic rib are Hr = 6.0 mm, Wr = 3.47 mm, and Lr = 3.0 mm when Re = 6000. The findings of this study can provide insights for research on flow spoiler structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.