Abstract

The low work-function ZrO/W(100) surface was examined with the aim of understanding the reducing mechanism of the work function. Low-energy electron diffraction (LEED) was employed to analyze the surface atomic arrangement, and X-ray photoelectron spectroscopy (XPS) was used to identify the surface chemical condition. The ZrO/W(100) surface was made as follows: (i) around three monolayers of Zr were deposited on a clean W(100) surface, (ii) the sample was heat treated in an oxygen ambience of 1.3x10 −5 Pa for several tens of minutes at ∼1500 K, and (iii) the sample was flash heated at 2000 K in ultrahigh vacuum (UHV). During heat treatment in O 2 , the deposited Zr was oxidized to ZrO 2 , and the LEED pattern formed was p(2×1). The work function increased to 5.3 eV. Subsequent flash heating in UHV changed the p(2×1) LEED pattern into a c(4×2) pattern, and transformed ZrO 2 into the so-called Zr–O complex, the oxidized level of which is between ZrO 2 and metallic Zr. A drastic decrease in the work function to 2.7 eV ensued. The angular dependence of XPS showed that the Zr–O complex segregated within a few monolayers at the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.