Abstract

AbstractNonionic surfactants have proven useful in various applications such as wastewater treatment, enhanced oil recovery, dyeing, and cosmetics. Novel nonionic surfactants such as PEMP, BEMP, HEMP and BEEP were synthesized based on succinic acid derivatives and using L‐isoleucine as the linking group and four polyether alcohols as the hydrophilic group. First, the structures of the four nonionic surfactants were studied using Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectra. Then the critical micelle concentration (CMC) and surface tension at CMC (γCMC) of the four nonionic surfactants in aqueous solution were tested. γ‐lg c curves determined the relationships of their surface properties as BEEP > PEMP > BEMP > HEMP. In order to expand the range of applications for nonionic surfactants, we evaluated the salt‐resistant properties of four such surfactants. Our findings demonstrated that this class of surfactants indeed has superior salt‐resistant properties. Molecular dynamics (MD) simulations were used to study how surfactant molecules aggregate in the interfacial film. The study investigated the trend of solvent accessible surface area (SASA) over time. Results showed that the surfactant molecules interacted well with solvent molecules in the equilibrium state. This study investigates the performance differences among four types of surfactants using the electrostatic potential (ESP) distribution of their molecules. The study employed both experimental and computational simulations to provide a more comprehensive understanding of surfactant properties. The results offer insights into the theoretical research and application extension of this class of surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.