Abstract

In order to produce semiconductive (Ba0.8Sr0.2) (Ti0.9Zr0.1)O3 ceramics (BSZT), providing low resistivity for boundary-layer capacitor applications, a controlled valency method and a controlled-atmosphere method were applied and studied. In the controlled-valency method, trivalent ions (La3+ Sb3+) and pentavalent ions (Nb5+, Sb5+, Ta5+) were doped into BSZT ceramics, while in the controlled-atmosphere method, samples were sintered in air and a reducing atmosphere. The doped BSZT ceramics sintered in the reducing atmosphere showed much lower resistivities and smaller temperature coefficient of resistivity (TCR) than those sintered in air, indicating that low partial pressure of oxygen will increase the solubility of the donor dopant and enhance the grain growth. In addition, a small negative TCR at low temperature, as well as a small positive TCR at higher temperature, are also observed for specimens fired in a reducing atmosphere. The former is attributed to the semiconductive grain and the latter to the small barrier layer formed at the grain boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.