Abstract

Brefeldin A (BFA), a fungal metabolite, significantly inhibited the release of herpes simplex virus type 1 (HSV-1) from infected human fibroblast cells. Electron micrographs of HSV-1-infected and BFA-treated human cells demonstrated the presence of enveloped particles trapped between outer and inner nuclear membranes. Analyses of viral glycoproteins B, C, and D (gB, gC, and gD) showed faster migrating, immature forms in BFA-treated cells when compared to the mature glycoproteins, as observed in the untreated control cells. The shift in mobilities of the glycoproteins in BFA-treated cells apparently was due to the disassembly of the Golgi complex when evaluated by an indirect immunofluorescence assay. The immature forms of gB, gC, and gD could not be detected on the surface of BFA-treated human fibroblast cells. Removal of BFA resulted in a reorganization of the Golgi complex and formation of fully glycosylated gB, gC, and gD. Moreover, the HSV-1 particles released from the treated cells after the removal of BFA completely restored the infectivity of the viral particles. Our results indicate that human fibroblast cells have an endoplasmic reticulum—Golgi cycling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.