Abstract

3,3'-Dimethylbenzidene (DMB) is a substance classified into the group of carcinogens. The value of maximum admissible concentration for this substance in the workplace air is not specified in Poland. Bearing in mind that DMB is used in domestic companies there is a need to develop a sensitive method for determining 3,3'-dimethylbenzidine in the work environment. The method consists in passing DMB-containing air through sulfuric acid-treated glass fiber filters, washing out the substance settled on the filter, using water and solution of sodium hydroxide, liquid-liquid extraction with toluene, replacing dissolvent with acetonitrile and analyzing the obtained solution. Studies were performed using high-performance liquid chromatography (HPLC) technique. An Agilent Technologies chromatograph, series 1200, with a diode-array detector (DAD) and a fluorescence detector (FLD) was used in the experiment. In the test, an Ultra C18 column of dimensions: 250×4.6 mm, particle diameter (dp) = 5 μm (Restek) was applied. The method is linear (r = 0.999) within the investigated working range of concentration 1.08-21.6 μg/ml, which is equivalent to air concentrations 2-40 μg/m3 for a 540 l air sample. The limit of detection (LOD) of quantification determination is 5.4 ng/ml and the limit of quantification (LOQ) - 16.19 ng/ml. The analytical method described in this paper allows for selective determination of 3,3'-dimethylbenzidine in the workplace air in the presence of 1,4-phenylenediamine, benzidine, aniline, 3,3'-dimethoxybenzidine, 2-nitrotoluene, 3,3'-dichlorobenzidine and azobenzene. The method is characterized by good precision and good accuracy, it also meets the criteria for procedures involving the measurement of chemical agents, listed in EN 482:2012.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.