Abstract

Gas atomization is the most common approach used to produce powders of metallic alloys, and the high cooling rates involved frequently lead to the formation of non-equilibrium microstructures and phases. The transformations that occur in the powders upon heating are of great interest but are challenging to study experimentally. Here we use a novel focused ion beam-based specimen preparation protocol to obtain cross sections through individual gas-atomized powder particles of three different aluminum alloys: solid solution-strengthened Al5056, precipitation-hardenable Al6061, and an Al–Cr–Mn–Co–Zr alloy which contains icosahedral quasicrystal dispersoids. In situ scanning transmission electron microscopy heating experiments were performed on these cross-sectional specimens to investigate the changes that occur in the metastable phases and non-equilibrium microstructures upon heating. The experiments reveal the details of a wide variety of thermally activated processes occurring in the particles including: solute redistribution to eliminate micro-segregation; dissolution, coarsening, transformation and decomposition of secondary phases; and precipitation within the aluminum matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.