Abstract

Whole-cell patch-clamp recordings from single cultured cortical neurones have been used to study the action of (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propionic acid (ATPO), which has previously been proposed to be a potent selective antagonist of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors. ATPO competitively reduced peak responses evoked by semi-rapid applications of AMPA (Ki = 16 microM) but had variable effects on plateau responses, which were on average unchanged. Following blockade of AMPA receptor desensitization by cyclothiazide (CTZ, 100 microM), the plateau responses were reduced by ATPO to a similar extent as the peak responses, indicating that ATPO reduces desensitization of AMPA receptors. Semi-rapid application of kainic acid (KA) and the KA receptor-selective agonist, (2S,4R)-4-methylglutamic acid (MeGlu) evoked non-desensitizing responses which were competitively antagonized by ATPO (Ki values: 27 and 23 microM, respectively). Responses to MeGlu were unaffected by CTZ (100 microM), but potentiated 3 fold following blockade of KA receptor desensitization by concanavalin A (Con A, 300 microg ml(-1)). Responses of spinal cord neurones to MeGlu were blocked by ATPO to a similar extent before and after blockade of KA receptor desensitization by Con A. Although selectively potentiated by Con A, plateau responses to MeGlu were reduced by 69.6% by the AMPA selective antagonist, GYKI 53655 (10 microM). The remaining component was further reduced by ATPO with a Ki of 36 microM, which was not significantly different from that in the absence of GYKI 53655, but was greater than that on responses to AMPA. It is concluded that ATPO is a moderate-potency competitive inhibitor of naturally expressed non-NMDA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.