Abstract

Several new results on the physics linking edge poloidal flows to turbulent momentum transport are reported. These are based on experiments on the HL-2A tokamak. Significant deviation from the neoclassical prediction for mean poloidal flow in Ohmic and electron cyclotron resonance heating (ECRH) heated L-mode discharges is derived from direct measurement of the turbulent Reynolds stress. The deviation increases prominently with ECRH power. The turbulent poloidal viscosity is synthesized from fluctuation data, and is found to be comparable to the turbulent particle diffusivity. The intrinsic poloidal torque characterized by the divergence of the non-diffusive residual stress is deduced from synthesis for the first time in a tokamak plasma. Experimental evidence which demonstrates the dynamics of spectral symmetry breaking in drift wave turbulence is in good agreement with the development of the poloidal torque. Taken together, these results elucidate the connections between power injection, turbulence development, pressure gradient and residual stress from symmetry breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.