Abstract

Synucleinopathies are a group of neurodegenerative disorders, including Parkinson disease, associated with neuronal amyloid inclusions comprised of the presynaptic protein α-synuclein (α-syn); however the biological events that initiate and lead to the formation of these inclusions are still poorly understood. There is mounting evidence that intracellular α-syn aggregation may proceed via a seeding mechanism and could spread between neurons through a prion-like mechanism that may involve other amyloidogenic proteins. Several lines of evidence suggest that Aβ peptides and/or extracellular Aβ deposits may directly or indirectly promote intracellular α-syn aggregation. To assess the effects of Aβ peptides and extracellular Aβ deposits on α-syn aggregate formation, transgenic mice (line M83) expressing A53T human α-syn that are sensitive to developing α-syn pathological inclusions were cross bred to Tg2576 transgenic mice that generated elevated levels of Aβ peptides and develop abundant Aβ plaques. In addition these mice were bred to mice with the P264L presenilin-1 knock-in mutation that further promotes Aβ plaque formation. These mice demonstrated the expected formation of Aβ plaques; however despite the accumulation of hyperphosphorylated α-syn dystrophic neurites within or surrounding Aβ plaques, no additional α-syn pathologies were observed. These studies show that Aβ amyloid deposits can cause the local aggregation of α-syn, but these did not lead to more extensive α-syn pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.