Abstract

The transport of polyamines through the liquid membranes with di-2-ethylhexyl phosphoric acid (D2EHPA) was investigated. The study was performed in three main steps: liquid-liquid extraction (LLE), bulk liquid membrane (BLM) extraction, and supported liquid membrane (SLM) extraction. Equilibrium distribution experiments allowed determining the extraction constants and stoichiometric coefficients for each polyamine. It turned out that one amino group binds two molecules of carrier (one D2EHPA dimer) and the extractability of polyamine rises with the increase in number of function groups in the molecule. The BLM and SLM experiments showed that despite considerable differences in distribution ratio between various polyamines the extraction efficiencies for all of them are very approximate. The smaller diamines compensate the lowest affinity to membrane phase with faster interface reaction kinetics and higher diffusivity. Finally, the SLM extraction conditions were optimized. The main parameters that influence the transport are the pH of the donor and acceptor phases. The extraction efficiencies obtained for polyamines are high (80-90%) and give hope for an application in bioanalytical chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.