Abstract

The Friedel's salt (Cl-AFm) as a major hydration phase in chlorinated cement-based materials plays an important role in the immobilization of chromate through ion exchange with chloride. To study the solid solutions of Ca4[Al(OH)6]2CrO4·nH2O (CrO4-AFm) and the composition of coexisting aqueous phase, AFm phases containing Cl− and CrO2- 4 were synthesized and characterized with XRD, SEM, FTIR, FAAS and Ion chromatography (IC).Based on the determined total solubility of products and ion concentrations in solution, a solid solution-aqueous solution (SSAS) model for binary mixing of Cl-AFm and CrO4-AFm phases was established to predict aqueous solubility of Ca4[Al(OH)6]2[(CrO4)x(Cl)2-2x]•nH2O as a function of total Cl/Cr ratio in solid solution system. The solubility constant (pK) of pure Cl-AFm is 27.09 and its free energy of formation (ΔGo f) is −7047.80 kJ mol−1 at 27 °C. pK of pure CrO4-AFm is 29.07 and its ΔGo f is −8238.66 kJ mol−1 at 27 °C. Both the experimental and modeled data showed that the formation of solid solutions between Cl-AFm and CrO4-AFm could greatly lower the chromate concentration in aqueous solution. Therefore, this study suggested that (Cl, CrO4)-AFm compounds could efficiently immobilize the trace metal CrO42- in cement-stabilized wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.