Abstract

Current models for hydrate formation in subsea pipelines require an arbitrary assignment of a subcooling criterion for nucleation. In reality hydrate nucleation times depend on both the degree of subcooling and the amount of time the fluid has been subcooled. In this work, differential scanning calorimetry was applied to study hydrate nucleation for gas phase hydrate formers. Temperature ramping and isothermal approaches were combined to explore the probability of hydrate nucleation for both methane and xenon. A system-dependent subcooling of around 30 K was necessary for hydrate nucleation from both guest molecules. In both systems, hydrate nucleation occurred over a narrow temperature range (2–3 K). The system pressure had a large effect on the hydrate nucleation temperature but the ice nucleation temperature was not affected over the range of pressures investigated (3–20 MPa). Cooling rates in the range of (0.5–3 K/min) did not have any statistically significant effect on the nucleation temperature for each pressure investigated. In the isothermal experiments, the time required for nucleation decreased with increased subcooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.