Abstract

Abstract A solution of the stationary cylindrical flame in both source and sink configurations is obtained analytically using simplified reaction rate and diffusion models. The solution is used to investigate the effects of curvature in the absence of stretch and identify the ranges where ducting and source/sink effects are dominant. We also investigate the concept of a minimum radius of curvature by introducing non-local effects on the flame. For both configurations a stable solution may be found for any imposed source flow rate. Ducting, a purely hydrodynamic process, is dominant at low curvature when the flame is far from the source or sink. Near a source, however, source effects become important. This occurs when the flame radius of curvature is comparable to the flame thickness. The modification of the reaction zone structure and the burning rate is not significant since the flame still completely burns the reactants. At Le ≠ 1 the reaction zone thickness is further increased for Le > 1 and further r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.