Abstract
The pluripotency and differentiation states of embryonic stem cells (ESCs) are regulated by a set of core transcription factors, primarily Sox2, Oct4, and Nanog. Although their transcriptional regulation has been studied extensively, the contribution of posttranslational modifications in Sox2, Oct4, and Nanog are poorly understood. Here, using a CRISPR-Cas9 knockout library screen in murine ESCs, we identify the E3 ubiquitin ligase Stub1 as a negative regulator of pluripotency. Manipulation of Stub1 expression in murine ESCs shows that ectopic Stub1 expression significantly reduces the protein half-life of Sox2, Oct4, and Nanog. Mechanistic investigations reveal Stub1 catalyzes the polyubiquitination and 26S proteasomal degradation of Sox2 and Nanog through K48-linked ubiquitin chains and Oct4 via K63 linkage. Stub1 deficiency positively enhances somatic cell reprogramming and delays differentiation, whereas its enforced expression triggers ESC differentiation. The discovery of Stub1 as an integral pluripotency regulator strengthens our understanding of ESC regulation beyond conventional transcriptional control mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.