Abstract

We compare the quantum and classical dynamics of a particle moving in a cosine potential while subject to a time-dependent force. We concentrate here on the behavior of an initially well-localized wave packet at times before the classically chaotic motion is fully developed. We find that the quantum and classical dynamics are indistinguishable well beyond the Ehrenfest time where the wave packet delocalizes. The quantum and classical descriptions first differ precisely when the classical probability density is folded in the vicinity of a hyperbolic fixed point. At this point, the wave function acquires a nodal structure which we show to be the result of a simple beating phenomenon between paths in the semiclassical propagator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.