Abstract

Field induced structures are studied inside suspensions of magnetic colloidal particles of micronic size. We have characterized the average distance between aggregates in a thin cell with the magnetic field perpendicular to the plane and also in the presence of a rotating field with the plane of rotation perpendicular to the plane of the cell. The characteristic size of the mesostructure is predicted on the basis of a thermodynamic model. The theory well predicts the experimental results in the uniaxial case but not in the case of ae rotating field; in this last case, the surface tension which is needed to have a good fit is far too low compared to its expected order of magnitude. When the field is uniaxial and sinusoidal we have found a collective instability where all the aggregates are rotating simultaneously in a chaotic way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.