Abstract

Tautomerization of 2-(2-hydroxyphenyl)-1-azaazulene (2OHPhAZ) in the gas phase and ethanol has been studied using B3LYP, M06-2X, and ωB97XD density functional theory (DFT) with different basis sets. For more accurate data, energies were refined at CCSD(T)/6-311++G(2d,2p) in the gas phase. Nuclear magnetic resonance (NMR), aromaticity, Fukui functions, acidity, and basicity were also calculated and compared with experimental data. Time-dependent density functional theory (TDDFT)-solvation model based on density (TDDFT-SMD) calculations in acetonitrile have been utilized for the simulation of UV–vis electronic spectra. In addition, electronic structures of the investigated system have been discussed. The results reveal that the enol form (2OHPhAZ) is thermodynamically and kinetically stable relative to the keto tautomer (2OPhAZ) and different rotamers (2OHPhAZ–R1:R3) in the gas phase and ethanol. A comparison with the experiment illustrates a good agreement and supports the computational findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.