Abstract

The transverse dynamics of a magnetized pure electron plasma confined in a Penning–Malmberg trap is analogous to that of a two-dimensional (2D) ideal fluid. The dynamics of a system in a regime of external forcing due to the application of time-dependent potentials on different azimuthal sectors of the confining circular wall is studied numerically by means of 2D particle-in-cell simulations. The evolution of turbulence starting from an annular initial density distribution is investigated for different kinds and parameters of forcing by means of wavelet-based multiresolution analysis. From an experimental point of view, the analyzed forcing technique is useful to excite or damp different diocotron perturbations and therefore for the control and manipulation of plasma evolution. Nonetheless, the numerical results indicate that even in a weak forcing regime the system evolution is sensitive to small initial density fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.