Abstract

AbstractNew generation polyurethane nanocomposites based on toluene diisocyanate, poly(propylene glycol), hyperbranched polymers (HBPs), and nanosilica were synthesized with the aim of determining the effect of the loading and nature of nanosilica and the functionality of HBP on the structure and properties of polyurethane nanocomposites. Good dispersion of nanosilica at 4 wt % loading in the polymer was confirmed from atomic force microscopy. The properties of the polyurethane nanocomposites were a function of content and nature of the nanosilica in the matrix. The optimum silica loading was 4 wt %. At this loading, tensile strength and storage modulus at 25°C of the nanocomposites increased by 52 and 40%, respectively over the pristine polyurethane. Organo‐treated nanosilica exhibited higher physico‐mechanical properties than the untreated one. With the increase of functionality in the hyperbranched polyol, the tensile strength, thermal stability, and dynamic mechanical properties of the nanocomposites improved. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.