Abstract

Localization of brain activity involves solving the EEG inverse problem, which is an undetermined ill-posed problem. We propose a novel approach consisting in estimating, using structured sparsity regularization techniques, the Brain Electrical Sources (BES) matrix directly in the spatio-temporal source space. We use proximal splitting optimization methods, which are efficient optimization techniques, with good convergence rates and with the ability to handle large nonsmooth convex problems, which is the typical scenario in the EEG inverse problem. We have evaluated our approach under a simulated scenario, consisting in estimating a synthetic BES matrix with 5124 sources. We report results using l 1 (LASSO), l 1 /l 2 (Group LASSO) and l 1 + l 1 /l 2 (Sparse Group LASSO) regularizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.