Abstract

AbstractBubble dynamics in gas fluidized beds are mathematically chaotic and difficult to predict. Various ways have been proposed in the past to alter the overall bubble dynamics to improve particular processes. In particular, it has been shown that pulsed gas flow and vibration can be used to transform the chaotic motion of gas bubbles into a dynamically structured pattern. The structured bubbling pattern does not change with the system width, opening opportunities to address key issues in scaling up gas‐solids bubbling fluidized beds. However, the pattern can only maintain for a limited particle height, well below the height of most industrial fluidized beds. Herein, we proposed to use a layered configuration with multiple stages of gas distributors to maintain the ordered bubbling structure to a higher particle height. Computational fluid dynamics‐discrete element method (CFD‐DEM) simulations performed here demonstrate the effectiveness and key parameters for maintaining structure in the proposed design, providing potential for industrial use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.