Abstract

Human non-pancreatic secretory phospholipase A 2 (hnps-PLA 2) is a group IIA enzyme that is massively over-expressed in a variety of severe inflammatory diseases. The enzyme degrades membrane phospholipids and it has been hypothesized that this activity can lead to a loss of tissue and organ integrity and function. This report overviews efforts directed toward the identification and clinical evaluation of a new class of anti-inflammatory drugs that specifically targets and inhibits the catalytic site of this hydrolytic enzyme. To achieve this goal, structure-based drug design was applied to a lead molecule identified by random high volume screening. Through an iterative process consisting of X-ray structure determination followed by inhibitor modification and testing, the lead compound was improved more than 6000-fold. Detailed information learned from earlier X-ray studies of stable substrate mimics aided this inhibitor improvement process. The optimized drug candidate, LY315920/S-5920, is currently undergoing phase II clinical evaluation. The outcome of studies such as these will define with greater clarity the pathological role of hnps-PLA 2 in human inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.