Abstract
The structural anisotropy and shear rheology of colloidal gels under startup of shear flow are calculated by Brownian dynamics simulations modified to include particle surface-mediated attractions, which is a model for thermoreversible colloidal gels. Shear-induced structural changes are analyzed in both real and reciprocal space through computation of the pair distribution function and structure factor. A distinct structural anisotropy is evident as alignment along the compressional and vorticity axes. A spherical harmonics expansion of pair distribution function is calculated to analyze structural anisotropy. In reciprocal space, structural anisotropy is quantified through an alignment factor, which shows overshoot behavior similar to the stresses. Based on the microstructure analysis, the evolution of the structural anisotropy is explained by the anisotropic rupture of the colloidal gel microstructure. This result provides evidence for how shearing creates structural anisotropy. The structural anisotro...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.