Abstract

This study aims at characterization of porous poly(ε-caprolactone) (PCL) scaffolds prepared by the methods of thermally induced phase separation (TIPS) and TIPS supported by particulate leaching (PL). Both techniques were combined with freeze-drying. Two PCL grades (with different average molecular weight characterized by MFR 6.1 and 1.2 g/10 min) were employed in the fabrication of scaffolds. Three types of salt (sodium chloride) particles were used in the TIPS-PL preparation of the PCL sample: (i) smaller particles (S) measuring 200–315 μm, (ii) larger particles (B) measuring 500–600 μm, and (iii) mixture of S and B particles (S/B = 1/1 wt/wt). The crystallization behavior of the PCL solutions and the thermal properties of scaffolds were investigated by polarized light microscopy (PLM) and differential scanning calorimetry (DSC), respectively. The structural changes of PCL were studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR). The scaffold structure was visualized by means of scanning electron microscopy (SEM) and X-Ray micro-computed tomography (X-ray micro-CT). Furthermore, the density, porosity, water uptake, contact angle and compressive properties of scaffold were investigated. The molecular weight of PCL had an impact on the crystallization of the PCL solutions and thereby on the crystallinity of scaffolds and the morphology of pore walls formed during TIPS. Sodium chloride grains had an influence on the pore size and overall morphology of foam scaffolds prepared by TIPS-PL. The addition of NaCl decreased significantly the density and compressive properties and increased the porosity and water uptake of scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.