Abstract

It is hard to quantify the trace pollutants in the environment without the corresponding reference standards. Structure identifications of unknown organic pollutants are thus of great importance in environmental analysis. As for polybrominated diphenyl ethers (PBDE) with one substituent of methoxyl group, there are 837 congeners, but only 32 standards are commercially available. In this work, an effective method based on gas chromatography coupled with mass spectrometry (GC–MS) was proposed to predict the potential structures of methoxylated polybrominated diphenyl ethers (MeO-PBDEs). The mass fragmentation pattern using SIM mode not only provided the useful information on the substitution position of methoxyl group, the number of Br atoms, but also guaranteed the high sensitivity for trace analysis. Br distribution patterns of the unknown MeO-PBDEs were revealed by a linear regression model with dummy variables which described the retention time relationship between MeO-PBDEs and the corresponding PBDEs on different types of GC columns. This method was successfully used to identify three new MeO-PBDEs metabolites of BDE-28 as 4-MeO-BDE-22, 4′-MeO-BDE-25 and 4-MeO-BDE-31 in the pumpkins. Therefore, the newly developed structure prediction model based on GC–MS behavior is helpful in the evaluation of unknown PBDE metabolites in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.