Abstract

Bacteria utilize multiple sigma factors that associate with core RNA polymerase (RNAP) to control transcription in response to changes in environmental conditions. In Escherichia coli and Salmonella enterica, Crl positively regulates the σ(S) regulon by binding to σ(S) to promote its association with core RNAP. We recently characterized the determinants in σ(S) responsible for specific binding to Crl. However, little is known about the determinants in Crl required for this interaction. Here, we present the X-ray crystal structure of a Crl homolog from Proteus mirabilis in conjunction with in vivo and in vitro approaches that probe the Crl-σ(S) interaction in E. coli. We show that the P. mirabilis, Vibrio harveyi, and E. coli Crl homologs function similarly in E. coli, indicating that Crl structure and function are likely conserved throughout gammaproteobacteria. We utilize phylogenetic conservation and bacterial two-hybrid analyses to predict residues in Crl important for the interaction with σ(S). The results of p-benzoylphenylalanine (BPA)-mediated UV cross-linking studies further support the model in which an evolutionarily conserved central cleft is the surface on Crl that binds to σ(S). Within this conserved binding surface, we identify a key residue in Crl that is critical for activation of Eσ(S)-dependent transcription in vivo and in vitro. Our study provides a physical basis for understanding the σ(S)-Crl interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.