Abstract
Molecular dynamics simulations for the liquid-vacuum interface of the ionic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM+/NO3-) were performed for both electronically polarizable and nonpolarizable potential energy surfaces. The interfacial structural properties, such as the oscillation in the number density profile, the orientational ordering, and the local clustering in the interfacial region, were calculated. The simulations with both the polarizable and nonpolarizable model demonstrate the existence of an inhomogeneous interfacial structure normal to the surface layer. It was found for both models that the ethyl tail group on EMIM+ is likely to protrude outward from the surface. In the outmost surface layer, the cation is likely to lie on the surface with the imidazolium ring parallel to the interface, while there is a second region with enhanced density from that in the bulk where the cation preferably slants with the imidazolium ring tending to be perpendicular to the surface. The results also reveal that the electronic polarization effect is important for the ionic liquid interface. It is found that the cation is likely to be segregated at the ionic liquid surface for the polarizable model, while for the nonpolarizable model, the anion is found to be more likely to exhibit such behavior. The surface tension of the polarizable model (58.5 +/- 0.5 mN/m) is much smaller than that of the nonpolarizable model (82.7 +/- 0.6 mN/m), in better agreement with extrapolated experimental measurements on similar ionic liquid systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.