Abstract

Voltage-gated and ligand-modulated ion channels play critical roles in excitable cells. To understand the interplay among voltage sensing, ligand binding, and channel opening, the structures of ion channels in various functional states and in lipid membrane environments need to be determined. Here, the random spherically constrained (RSC) single-particle cryo-EM method was employed to study human large conductance voltage- and calcium-activated potassium (hBK or hSlo1) channels reconstituted into liposomes. The hBK structure was determined at 3.5 Å resolution in the absence of Ca2+. Instead of the common fourfold symmetry observed in ligand-modulated ion channels, a twofold symmetry was observed in hBK in liposomes. Compared with the structure of isolated hSlo1 Ca2+ sensing gating rings, two opposing subunits in hBK unfurled, resulting in a wider opening towards the transmembrane region of hBK. In the pore gate domain, two opposing subunits also moved downwards relative to the two other subunits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.