Abstract

High-resolution x-ray data are reported for the ordered phases of long-chain di-monounsaturated C22:1 phosphocholine lipid bilayers. Similar to PC lipids that have saturated chains, diC22:1PC has a subgel phase and a gel phase, but dissimilarly, we find no ripple phase. Our quantitative focus is on the structure of the gel phase. We have recorded 17 lamellar orders, indicating a very well-ordered structure. Fitting to a model provides the phases of the orders. The Fourier construction of the electron density profile has two well-defined headgroup peaks and a very sharp and deep methyl trough. The wide-angle scattering exhibits two Bragg rods that provide the area per molecule. They have an intensity pattern quite different than that of lipids with saturated chains. Models of chain packing indicate that ground state chain configurations are tilted primarily toward next nearest neighbors with an angle that is also consistent with the modeling of the electron density profile. Wide-angle modeling also indicates broken mirror symmetry between the monolayers. Our wide-angle results and our electron density profile together leads to the hypothesis that the sn-1 and sn-2 chains have equivalent penetration depths in contrast to the gel phase structure of lipids with saturated hydrocarbon chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.