Abstract

Molecular dynamics simulations of the adsorption layer of five different surfactant molecules, namely pentanol, octanol, dodecanol, dodecyl trimethyl ammonium chloride, and sodium dodecyl sulphate have been performed at the free surface of water at two different surface densities, namely 1μmol/m2 (corresponding to unsaturated adsorption layer), and 4μmol/m2 (corresponding to saturated adsorption layer), on the canonical ensemble at room temperature. The surfactants have been chosen in such a way that the effect of their headgroup charge as well as alkyl tail length on the properties of the adsorption layer can be separately investigated. The results are analysed in terms of the molecular level structure of the adsorption layer; organisation of the different groups and molecules along the macroscopic surface normal axis as well as conformation and orientation of the apolar tail is investigated in detail. In addition, the roughness of the surface of the aqueous phase is also analysed, using the ITIM method for accurately locating the real, capillary wave corrugated surface of the aqueous phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.