Abstract

Recent investigations have suggested that tissue-specific regulatory factors are required for immunoglobulin gene transcription. Cells of the mouse lymphocytoid pre-B-cell line 70Z/3 contain a constitutively rearranged immunoglobulin kappa light chain gene; the nucleotide sequence of this gene exhibits all the known properties of a functionally competent transcription unit. Nevertheless, transcripts derived from this gene are detectable only after exposure of the cells to bacterial lipopolysaccharide, implying that accurate DNA rearrangement is not sufficient to activate expression of the gene. Comparison of the sequence of the 70Z/3 kappa light chain gene with those encoding other immunoglobulin heavy and light chains has revealed that a distinctive promoter region structure is characteristic of this multigene family. The sequence A-T-T-T-G-C-A-T lies approximately 70 base pairs upstream from the site of transcriptional initiation in every light chain gene examined; in heavy chain genes, the corresponding location is occupied by the precise inverse (A-T-G-C-A-A-A-T) of this sequence. Although adjacent regions of DNA have diverged extensively in evolution, these octanucleotide sequences are stringently conserved at this location among diverse immunoglobulin genes from at least two mammalian species. The proximity of this conserved octanucleotide block to the site of transcriptional initiation suggests that it may serve as a recognition locus for factors regulating immunoglobulin gene expression in a tissue-specific fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.