Abstract
The telomeric nucleoprotein complex protects linear chromosome ends from degradation. In contrast to most eukaryotes in which telomerase is responsible for telomere elongation by adding short DNA repeats synthesized using an RNA template, the telomere elongation in Drosophila involves transposition of specialized telomeric retroelements onto chromosome ends. Proteins that bind telomeric and subtelomeric sequences form specific telomeric chromatin, and its components are highly conserved among organisms employing different mechanisms of telomere elongation. This review is focused on the analysis of components of the Drosophila telomeric complex and its comparison with telomeric proteins in telomerase-encoded organisms. Structural and functional analysis of Drosophila telomeres suggests that there are three distinct chromatin regions: protective structure at the very end of chromosome (cap), subtelomeric region which is characterized by condensed chromatin structure, and the terminal retrotransposon array whose expression is under the control of an RNAi (RNA interference)-based mechanism. The link between RNAi and telomeric chromatin formation in germinal tissues is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.