Abstract

Results from direct numerical simulation of low heat release, turbulent nonpremixed reacting flows modeled using single-step reactions with constant and temperature-dependent rate laws are discussed, and compared with laminar predictions. The mixture fraction and its dissipation rate are statistically independent in regions of intense reaction, partially supporting a commonly made assumption in flamelet-based models. In the presence of a finite rate reverse reaction, the reaction zone spans the entire range of mixture fraction. The joint pdf of the reactive scalars evolves to an equilibrium that is dictated by a balance between the reactive and mixing fluxes in composition space. When the temperature-dependent rate law is implemented, strain-induced extinction is observed for a Zel'dovich (modified) number of 10. As the ratio of local flow to chemical time scale is decreased below unity, a larger fraction of the flow field experiences this mode of extinction. The critical turbulent scalar dissipation rate is compared with laminar values and asymptotic predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.