Abstract

Nitrogen and zirconium co-doped TiO2 (TiO2-N-x%Zr) photocatalysts were synthesized via a sol-gel method. The existing states of the dopants (N and Zr) and their corresponding band structures were investigated via XRD, Raman, BET, XPS, TEM, FT-IR, UV-vis DRS, and PL techniques. It was found that N existed only as a surface species (NOx) and Zr(4+) was doped in a substitutional mode; the doping of Zr(4+) ions and modification of N extended the absorption into the visible region and inhibited the recombination of electrons and holes. Moreover, the excess Zr(4+) ions existed as the ZrTiO4 phase when the content of Zr was sufficiently high, which could also contribute to the separation of the charge carriers. Therefore, the TiO2-N-x%Zr samples show enhanced visible-light photocatalytic activity compared with single-doped TiO2. These results offer a paradigm for the design and fabrication of optoelectronic functional materials such as solar cells and photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.