Abstract

Spatial patterns of marine predator communities are influenced to varying degrees by prey distribution and environmental gradients. We examined physical and biological attributes of an estuarine fjord with strong glacier influence to determine the factors that most influence the structure of predator and prey communities. Our results suggest that some species, such as walleye pollock (Theragra chalcogramma), black-legged kittiwake (Rissa tridactyla), and glaucous-winged gull (Larus glaucescens), were widely distributed across environmental gradients, indicating less specialization, whereas species such as capelin (Mallotus villosus), harbor seal (Phoca vitulina), and Kittlitz's murrelet (Brachyramphus brevirostris) appeared to have more specialized habitat requirements related to glacial influence. We found that upper trophic level communities were well correlated with their mid trophic level prey community, but strong physical gradients in photic depth, temperature, and nutrients played an important role in community structure as well. Mid-trophic level forage fish communities were correlated with the physical gradients more closely than upper trophic levels were, and they showed strong affinity to tidewater glaciers. Silica was closely correlated with the distribution of fish communities, the mechanisms of which deserve further study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.