Abstract

The structure of polymer solutions confined between surfaces is studied using a density functional theory where the polymer molecules have been modeled as a pearl necklace of freely jointed hard spheres and the solvent as hard spheres. The present theory uses the concept of universality of the free energy density functional to obtain the first-order direct correlation function of the nonuniform system from that of the corresponding uniform system, calculated through the Verlet-modified type bridge function. The uniform bulk fluid direct correlation function required as input has been calculated from the reference interaction site model integral equation theory using the Percus-Yevick closure relation. The calculated results on the density profiles of the polymer as well as the solvent are shown to compare well with computer simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.