Abstract

Using the vector Fourier transform and stationary phase method, an integral representation of the structure of image field in an aplanatic system with polarized point source located at arbitrary position on the optical axis is obtained. Effects of wide aperture angle in object space on the structure of image field are examined numerically for the case of linearly polarized illumination. Simulation calculations show that, in a plane perpendicular to the optical axis, if the object space aperture angle is wide, the distribution of magnetic field will not be identical to that of electric field after they are rotated 90° around the optical axis with respect to each other, the contours of distribution of the electric and magnetic energy densities and the Poynting vector are approximately elliptical, and the object space aperture angle is the dominant factor that makes the distribution of Poynting vector lose circular symmetry. At the same time, the major axis of the contour of distribution of the electric energy density is perpendicular to the direction of the electric vector in the object space when using small image aperture angle, and will turn graduately to the same direction as the electric vector in the object space with the increase of image aperture angle. These conclusions are completely different from the predications of the previous theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.