Abstract

We consider the general form of "Correlated Worldline" (CWL) theories of quantum gravity. We show that one can have 2 different kinds of CWL theory, in which the generating functional is written as either a sum or a product over multiple copies of the coupled matter and gravitational fields. In both versions, the paths in a functional formulation are correlated via gravity itself, causing a breakdown of the superposition principle; however, the product form survives consistency tests not satisfied by the summed form. To better understand the structure of these two theories, we show how to perform diagrammatic expansions in the gravitational coupling for each version of CWL theory, using particle propagation and scalar fields as examples. We explicitly calculate contributions to 2-point and 4-point functions, again for each version of the theory, up to 2nd-order in the gravitational coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.