Abstract

Photon correlation spectroscopy, nonaqueous electrophoresis, and transmission electron microscopy were used to study the structure of silver nanoparticles (NPs) in n-decane, as a dependence of the concentration of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and temperature. If the concentration of AOT is lower than the critical micelle concentration (CMC), a silver NP is covered with a monolayer of AOT and reveals no electrophoretic mobility. At average concentrations (from CMC to 0.1 M) the hydrodynamic diameter of a NP does not change, but the ζ-potential increases from 0 to 110 mV. When the concentration of AOT increases from 0.1 to 1 M, ζ potential drops to 13 mV, and the hydrodynamic diameter increases to 90 nm. An increase in temperature to 70 °C leads to a reversible decrease in diameter to 40 nm. The hypothesis of clustering (polylayer adsorption) of "empty" micelles on silver NPs is proposed for the qualitative interpretation of the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.