Abstract
A nonnegative matrix is called regular if it admits a nonnegative generalized inverse. The structure of such matrices has been studied by several authors. If A is a nonnegative regular matrix, then we obtain a complete description of all nonnegative generalized inverses of A. In particular, it is shown that if A is a nonnegative regular matrix with no zero row or column, then the zero-nonzero pattern of any nonnegative generalized inverse of A is dominated by that of A T , the transpose of A. We also obtain the structure of nonnegative matrices which admit nonnegative least-squares and minimum-norm generalized inverses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.