Abstract

Porous carbon/cobalt (C/Co) composite nanofibers with diameters of 200–300 nm were prepared by electrospinning and subsequent carbonization processes. Two polymer solutions of polyacrylonitrile (PAN), polyvinyl pyrrolidone (PVP), and Co (CH3COOH) 2 (Co (OAc) 2) were used as C/Co composite nanofiber precursors. The study revealed that C/Co composite nanofibers were successfully prepared and cobalt particles with diameters of 20–30 nm were uniformly scattered in the carbon nanofibers. It was also observed that clear fibrous morphology with grainlike particles and good structural integrity were still maintained after calcination. The TGA analysis indicated the improved thermal stability properties of the composite nanofibers. The Brunauer-Emmett-Teller (BET) analysis indicated that C/Co composites nanofibers with meso-pores possessed larger specific surface area than that of carbon nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.