Abstract

Abstract After approximately 30 years of dormancy, the binary, ternary, and multicomponent intermetallic compounds of rare earth metals (R) with the group 14 elements (T) at the R 5 T 4 stoichiometry have become a goldmine for materials science, condensed matter physics, and solid-state chemistry. In addition to providing numerous opportunities to clarify elusive structure-property relationships, the R 5 T 4 compounds may soon be developed into practical materials by exploiting their unique sensitivity toward a variety of chemical and physical triggers. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, self-assembled, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of the R 5 T 4 compounds that can be controlled by varying either or both R and T, including mixed rare earth elements on the R-sites and different group 14 (and 13 or 15) elements occupying the T-sites. In addition to chemical means, the interslab interactions are tunable by temperature, pressure, and magnetic field. Presently, a substantial, yet far from complete, body of knowledge exists about the Gd compounds with T = Si and Ge. In contrast, only a little is known about the physics and chemistry of R 5 T 4 alloys with other lanthanides, while compounds with T = Sn and Pb remain virtually unexplored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.