Abstract

Thermodynamic stability boundary of structure-H hydrates with large guest species and methane (CH4) at extremely high pressures has been almost unclear. In the present study, the four-phase equilibrium relations in the structure-H CH4 + 1,1,2,2,3,3,4-heptafluorocyclopentane (1,1,2,2,3,3,4-HFCP) mixed hydrate system were investigated in a temperature range of (281.05 to 330.12) K and a pressure range up to 373 MPa. The difference between equilibrium pressures in the structure-H CH4 + 1,1,2,2,3,3,4-HFCP mixed hydrate system and the structure-I simple CH4 hydrate system gets larger with increase in temperature. The structure-H CH4 + 1,1,2,2,3,3,4-HFCP mixed hydrate survives even at 330 K and 373 MPa without any structural phase transition. The maximum temperature where the structure-H CH4 + 1,1,2,2,3,3,4-HFCP mixed hydrate is thermodynamically stable is likely to be beyond that of the structure-H simple CH4 hydrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.