Abstract

In trypanosomes, all mRNAs possess a spliced leader (SL) at their 5' end. SL is added to pre-mRNA via trans -splicing from a small RNA, the SL RNA. To examine structure-function aspects of the trypanosomatid SL RNA, an in vivo system was developed in the monogenetic trypanosomatid Leptomonas collosoma to analyze the function of chimeric and site-directed SL RNA mutants in trans -splicing. Stable cell lines expressing chimeric and mutated SL RNA from the authentic SL RNA regulatory unit were obtained. The chimeric RNA was expressed and assembled into an SL RNP particle, but could not serve as a substrate in splicing. Mutations in loop II and III of L.collosoma SL RNA formed the Y structure intermediate. In addition, a double SL RNA mutant in loop II, and positions 7 and 8 of the intron, also formed the Y structure intermediate, suggesting that these intron positions, although proposed to participate in the interaction of SL RNA with U5, may not be crucial for the first step of the trans -splicing reaction. A mutation in the exon located in loop I was not utilized in splicing, suggesting the importance of exon sequences for trans -splicing in trypanosomes. However, a double SL RNA mutant in loop II and exon position 31 was utilized in both steps of splicing; the mutant thus provides a model molecule for further analysis of positions essential for the function of the SL RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.